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Abstract

De-noising and extraction of the weak signature are crucial to fault prognostics in which case features are
often very weak and masked by noise. The wavelet transform has been widely used in signal de-noising due
to its extraordinary time-frequency representation capability. In this paper, the performance of wavelet
decomposition-based de-noising and wavelet filter-based de-noising methods are compared based on
signals from mechanical defects. The comparison result reveals that wavelet filter is more suitable and
reliable to detect a weak signature of mechanical impulse-like defect signals, whereas the wavelet
decomposition de-noising method can achieve satisfactory results on smooth signal detection. In order to
select optimal parameters for the wavelet filter, a two-step optimization process is proposed. Minimal
Shannon entropy is used to optimize the Morlet wavelet shape factor. A periodicity detection method based
on singular value decomposition (SVD) is used to choose the appropriate scale for the wavelet transform.
The signal de-noising results from both simulated signals and experimental data are presented and both
support the proposed method.
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1. Introduction

Rolling element bearing are of paramount importance to almost all forms of rotating
machinery and are among the most common machine elements. Bearing failure is one of the
foremost causes of breakdowns in rotating machinery and such failure can be catastrophic,
resulting in costly downtime. In order to prevent these kinds of failures from happening, various
bearing condition monitoring techniques have been developed. Among them, vibration analysis
has been used extensively due to its intrinsic advantage of revealing bearing failure [1,12].
After nearly four decades of study of the bearing failure mechanism [2–4], the theoretical

background of bearing failure modes has been covered quite comprehensively. The signature of a
damaged bearing consists of exponentially decaying ringing that occurs periodically at the
characteristic frequency [3]. The vibration signal of a defective bearing usually considers being
amplitude modulated at the characteristic defect frequency. Matching the measured vibration
spectrum with the defect characteristic frequency enables defect detection and enables diagnosis of
the defective area.
As for the vibration signal of rolling element bearing, signal modulation effect and noise are

two major barriers in incipient defect detection. Because of the amplitude-modulated effect, the
spectrum of defect signals consists of a harmonic series of frequency components present at the
bearing defect frequency with the highest amplitude around the resonance frequency [5]. To
overcome this barrier, an effective signal demodulation technique should be developed. Most of
the time vibration signals are collected with a vibration sensor installed on the bearing housing.
The sensors are subject to collecting vibration responses from other mechanical components and
noise sources. The inherent deficiency of the measuring mechanism introduces a great amount of
noise to the signal. The signature of a defective bearing is spread across a wide frequency band
and hence can easily become masked by noise and low frequency effects [6]. The weak signature,
at the early stage of defect development, is even more difficult to detect. A signal enhancing
method is needed to provide more evident information for incipient defect detection of rolling
element bearings.
To solve the problem of modulation, a large variety of signal demodulation methods have been

proposed. Eshleman [7] proposed a hardware-based signal envelope technique in which signals are
passed through a capacitor to produce the demodulated time waveform. Fast Fourier Transform
(FFT)-based Hilbert transform is the traditional method for deriving the signal envelope and has
been widely used in roller bearing diagnostics [8]. More recently, the wavelet transform has been
used for signal demodulation [5,6,9] and optimal band-pass filter design [10]. In summary, Hilbert
transform and wavelet transform offer promising techniques for signal demodulation. However,
those methods do not successfully address how to enhance the weak signature from a noisy signal
and how to detect early stage defects.
The problem of signal de-noising has a strong connection to roller element bearing prognostics.

De-noising and extraction of the weak signature are crucial to fault prognostics in which case
features are often very weak and masked by noise. Prognostics is achieved by detecting the defect
at its initial stage and alerting maintenance personnel before it develops into a catastrophic
failure. The standard approach for extracting signals from a noisy background is to design an
appropriate filter, which removes the noise components and at the same time, lets the desired
signal go through unchanged. Based on noise type and application, different filters can be
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designed to conduct the de-noising [11]. However, for a situation where the noise type and
frequency range are unknown, traditional filter design could become a very challenging task.
Therefore, research is focused on finding alternative methods. The wavelet transform has been
widely used in signal de-noising due to its extraordinary time-frequency representation capability
[13], which is discussed in detail later in this paper. Traditionally, most of the signal de-noising
approaches are dealing with detecting smooth curves from the noisy raw signals. However, the
vibration signal from faulty mechanical components, such as gears and bearings, are more like
impulses, instead of smooth and continuous curves. This unique feature constrains the application
of conventional signal de-noising method. A de-noising method based on Morlet wavelet analysis
is proposed and applied to the feature extraction of gearbox vibration signals [21]. This method
seeks optimal wavelet filters that only yield the largest kurtosis value for the transformed signal,
whereas the periodicity of the signal is not addressed.
In this paper, the performance of wavelet decomposition-based de-noising and wavelet filter-

based de-noising methods are compared based on signals from mechanical defects. The
comparison results reveal that the wavelet filter is more suitable and reliable to detect weak
and impulse-like signatures of mechanical defect signals, whereas the wavelet decomposition
de-noising method can achieve satisfactory results on smooth signal detection. In order to
select the optimal parameters for the wavelet filter, a two-step optimization process is
proposed. Minimal Shannon entropy is used as a criterion to optimize the shape factor of a
Morlet wavelet. A periodicity detection method based on Singular Value Decomposition (SVD) is
used to choose the appropriate scale for the wavelet transform. The signal de-noising results from
both simulated signals and the experimental data are presented and both support the proposed
method.
The remaining sections of this paper are organized as follows: In Section 2, the concept of a

wavelet transform is reviewed. In Section 3, the wavelet decomposition-based de-noising method
is discussed in detail. A comparison study is presented using two sets of simulated signals. The
results suggest that for impulse-like signals, wavelet decomposition-based de-noising method is
not able to achieve a satisfactory level of performance. In Section 4, the Morlet wavelet filter and
its underlying capability of detecting weak impulse signatures from a noisy background is
discussed and demonstrated using simulated signals. In Section 5, the proposed method is
validated using the data collected from bearing run-to-failure tests. The result demonstrates that
by designing an optimal wavelet filter bearing defects can be detected at an early stage of
development and therefore bearing prognostics is possible.
2. Wavelet transform

The wavelet is obtained from a single function cða;bÞðtÞ by translation and dilation:

cða;bÞðtÞ ¼
1ffiffiffi
a
p c

t� b

a

� �
, (1)

where a is the so-called scaling parameter, b is the time localization parameter and cðtÞ is called
the ‘‘mother wavelet’’. The parameters of translation b 2 R and dilation a40, may be continuous
or discrete.
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The wavelet transform of a finite energy signal xðtÞ with the analyzing wavelet cðtÞ is the
convolution of xðtÞ with a scaled and conjugated wavelet:

W ða; bÞ ¼
1ffiffiffi
a
p

Z 1
�1

xðtÞc�
t� b

a

� �
dt, (2)

where c�ðtÞ stands for the complex conjugation of cðtÞ.
The wavelet transform W ða; bÞ can be considered as functions of translation b with each scale a.

Eq. (2) indicates that the wavelet analysis is a time-frequency analysis, or a time-scaled analysis.
Different from the Short Time Fourier Transform (SFFT), the wavelet transform can be used for
multi-scale analysis of a signal through dilation and translation so it can extract time-frequency
features of a signal effectively.
Wavelet transform is also reversible, which provides the possibility to reconstruct the original

signal. A classical inversion formula is

xðtÞ ¼ C�1c

ZZ
W ða; bÞcða;bÞðtÞ

da

a2
db, (3)

where

Cc ¼

Z 1
�1

jĉðoÞj2

joj
doo1, (4)

ĉðoÞ ¼
Z

cðtÞ expð�jotÞdt: (5)
3. Wavelet decomposition-based de-noising

The underlying model for the noisy signal is basically of the following form:

xðnÞ ¼ sðnÞ þ swðnÞ; n ¼ 0; 1 . . . ;N � 1. (6)

In this simplest model, wðnÞ is standard Gaussian white noise, independent and identically
distributed (i.i.d.), denoted by wðnÞ �

i:i:d:
Nð0; 1Þ, and s is the noise level. The objective of de-noising

is to suppress the noise part of the signal xðnÞ and to recover sðnÞ. Theoretically, this is
accomplished by reconstructing the signal from the noisy data such that the mean squared error
between sðnÞ and the reconstructed signal is minimized. From a statistical viewpoint, the model is
a regression model over time and the method can be viewed as a nonparametric estimation of the
function sðnÞ using an orthogonal basis.
Wavelet de-noising is based on the principle of multi-resolution analysis [13]. By multi-level

wavelet decomposition the discrete detail coefficient and approximation coefficient can be
obtained. Grossmann [14] proved that the variance and amplitude of the details of white noise at
various levels decreases regularly as the level increases, whereas the amplitude and variance of the
wavelet transform of the available signal are not related to the change of scale. According to this
property, noise can be weakened or even removed by adjusting the wavelet coefficients properly.
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The general de-noising procedure involves three steps. The basic version of the procedure is as
follows:
1.
 Signal decomposition. Choose a wavelet basis, and choose a level N. Compute the wavelet
decomposition of the signal at level N.
2.
 Threshold detail coefficients. For each level from 1 to N, select a threshold and apply soft
thresholding to the detail coefficients.
3.
 Signal reconstruction. Compute wavelet reconstruction using the original approximation
coefficients of level N and the modified detail coefficients of levels from 1 to N.
Generally speaking, this method performs very well on Gaussian noise and can almost achieve
optimal noise reduction while preserving the signal. However, there are still three issues which
attract intensive research efforts.
The first is how to select an optimum wavelet for a particular kind of signal. Basically, the

wavelet decomposition would achieve a better result if the wavelet basis is ‘‘similar’’ to the signal
under analysis. Currently there are still no common guidelines for how to select the optimum
wavelet basis, or how to select the corresponding shape parameter and scale level for a particular
application.
The second issue is related to threshold selection and how to perform thresholding. Despite a

large variety of threshold selection strategies proposed in recent literatures [16–19], threshold
selection for a specific application where prior knowledge about the data is limited is still an open
issue.
The third issue is about the sparseness of wavelet coefficients, which will be addressed in this

paper. The wavelet decomposition-based de-noising method relies on the basic idea that the
energy of a signal will often be concentrated in a few coefficients in the wavelet domain.
Therefore, the nonlinear thresholding function will tend to retain a few larger coefficients
representing the signal and at the same time tend to reduce the noise coefficients to zero. It works
well if signal sðnÞ is a smooth curve with little to no abrupt changes. However, if the signal sðnÞ

consists of a lot of impulse components, which is often true in machinery diagnostic applications,
a sparse wavelet representation is very difficult to obtain. This adds great difficulty to the wavelet
de-noising process.
To better understand this limitation, consider the wavelet decomposition results of two

simulated signals, where signal (a) is the smooth function (sinusoidal) with additive white noise,
and signal (b) is a series of impulses with additive white noise (Figs. 1 and 2).
Multiple-level wavelet decomposition was conducted on both simulated signals. As shown in

Fig. 3, if the signal was decomposed into N scale, one approximation coefficient and N detail
coefficients can be obtained.
The fourth-order Symlet wavelet was adopted as the mother wavelet and both signals were

decomposed into five scales. All six of the coefficients of the series were plotted into one chart to
check the data sparseness.
Fig. 4 shows that the pure sinusoidal signal has much better wavelet presentation in terms of

sparseness. The detail coefficients at scale 1, 2, 3 and 4 are all approaching zero value. Conversely
for the impulse series signal, none of the coefficients are near zero. This also implies that impulse
signals have less capability of being compressed or de-noised.
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Fig. 1. Two simulated signals: (a) pure sinusoidal wave and (b) impulse series.
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Fig. 2. Simulated signals with the addition of white noise.
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Fig. 3. Scheme of multiple level wavelet decomposition.
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Fig. 4. Wavelet decomposition coefficients of two simulated signals: (a) pure sinusoidal wave and (b) impulse series.
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Fig. 5. Wavelet decomposition coefficients of two simulated signals with additive white noise: (a) pure sinusoidal signal

and (b) impulse series.
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The situation is much clearer by comparing the wavelet decomposition coefficients of the
signals with added white noise as shown in Fig. 5. The coefficients curve shape in Fig. 5(a) still
preserves the majority of information in Fig. 4(a), while the coefficient curve shape in Fig. 5(b) is
greatly distorted from Fig. 4(b). Simply speaking, the de-noising can be treated as a process of
recovering Fig. 4 from Fig. 5 by a particular thresholding strategy. Intuitively, to come out with a
reasonable threshold to recover Fig. 4(a) from 5(a) is a relatively easy task. But it will be much
more difficult to recover Fig. 4(b) from Fig. 5(b), even if a sophisticated thresholding strategy is
applied.
The decomposition coefficients after thresholding are shown in Fig. 6. The threshold selection

rule is based on Stein’s Unbiased Estimate of Risk soft principle [19]. Fig. 7 shows the recovered
signals after the thresholding procedure. Signal (a) is recovered quite well while signal (b) is
distorted significantly.
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Fig. 6. Wavelet decomposition coefficients after de-noising by thresholding (a) pure sinusoidal signal with white noise

and (b) impulse series with white noise.
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Fig. 7. The recovered signals obtained by wavelet de-noising (a) pure sinusoidal signal and (b) impulse series.
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In summary, an orthogonal wavelet transform can compress the ‘‘energy’’ of the signal in a
relatively small number of big coefficients, while the energy of the white noise will be dispersed
throughout the transform with relatively small coefficients. The de-noising effect is impacted by
the relative energy level of signal coefficients and white noise coefficients. Since only a small
number of large coefficients can characterize the original signal (a), the pure sinusoidal signal, the
classical wavelet de-noising method performs very well. However, it is much more challenging to
de-noise the impulse series signal where wavelet coefficients are not sparse.
4. Optimal wavelet filter

4.1. The principle of the wavelet filter

Another method to extract useful information from a noisy signal is the wavelet filter. An
important property of the Fourier transform is that convolution in one domain corresponds to
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multiplication in the other domain. So Eq. (2) can take the following alternative form:

W ða; bÞ ¼
ffiffiffi
a
p

F�1fX ðf Þc�ðaf Þg, (7)

where X ðf Þ and cðf Þ are the Fourier transforms of xðtÞ and cðtÞ, respectively, and F�1 denotes the
inverse Fourier transform. Eq. (7) shows that the wavelet transform can also be considered as a
special filtering operation. The frequency segmentation is obtained by dilating the analysis
wavelet. In other words, the convolution process in the wavelet transform is simply a filtering
operation if the daughter wavelet is treated as a filter kernel. The frequency response of the
wavelet filter varies as the basis wavelet shape and scale changes, thus low-pass, high-pass, band-
pass or even multiple-band pass filters can be built by reconstructing the wavelet coefficients at
selected scales.
Another feature of Eq. (2) is that W ða; bÞ gives the information of xðtÞ at different levels of

resolution and also measures the similarity between the signal xðtÞ and the wavelet function. This
implies that a wavelet can be used for feature discovery if the wavelet used is similar to the feature
components hidden in the signal. To some extent, this convolution process of the daughter
wavelet and the analyzed signal is similar to another classical concept of signal processing:
matched filtering, which is originally derived from the correlation process.
In the application of machinery prognostics, what attracts attention in the original noisy signal

is the periodicity and relative energy level of the impulse components, which are indicators of
impacts due to cracks, spalling, or corrosion, etc. Therefore, the objective of weak signal detection
is to detect the target signal, instead of recreating the signal. Specifically, in roller bearing
prognostics, we will attempt to detect the hidden periodic impulses.
Fig. 8 shows a signal measured on a bearing with an outer race fault. The data was collected on

a machinery fault simulator manufactured by SpectraQuest, Inc. The rotation speed was 50Hz
and the ball pass frequency on the outer race (BPFO) [3] is 152.6Hz. That means the characteristic
impulse period should be 1/BPFO, or equal to 0.0066 s. Since this measurement was conducted on
a mature faulty bearing in a laboratory with the noise sources well under control, the signal clearly
shows the characteristic impulse with the period as expected.
Enlarging Fig. 8 and only observing one impulse, the resonance excited by the impact is visibly

demonstrated as shown in Fig. 9(a). The speed of impulse decay, the number of rebounds, and the
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Fig. 8. Vibration signal of roller bearing with outer race fault.
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Fig. 9. Comparison of (a) mechanical impulse and (b) Morlet wavelet.
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amplitude of impulse all depend on the system damping coefficient, resonance frequency, and
signal transmission path. In addition, the signal can vary significantly with application-specific
variables, including sensor location, sensor installation mechanism, sensor characteristics, etc.
Therefore, the task of wavelet filter construction becomes identification of a wavelet that can be
adjusted to have a ‘‘similar’’ curve shape with the bearing defect signature.

4.2. Introduction to the Morlet wavelet filter

The Morlet wavelet was defined as [20]

cðoÞ ¼ expð�2p2ðn� n0Þ
2
Þ, (8)

which is a complex wavelet that can be decomposed into two parts, one for the real part, and the
other for the imaginary part, as

crðtÞ ¼
1ffiffiffiffiffiffi
2p
p expð�b2t2=2Þ cosð2pn0tÞ, (9)

ciðtÞ ¼
1ffiffiffiffiffiffi
2p
p expð�b2t2=2Þ sinð2pn0tÞ, (10)

where n0 is a constant, and b is the shape parameter, which balances the time resolution and the
frequency resolution of the Morlet wavelet.
Generally only the real part of the Morlet wavelet is used. The real part of the Morlet wavelet is

a cosine signal that decays exponentially on both the left and right sides, and its function shape is
very similar to an impulse. This similarity makes the Morlet wavelet very attractive and widely
applied in mechanical fault diagnostic applications.
A daughter Morlet wavelet is obtained by time translation and scale dilation from the mother

wavelet,

ca;bðtÞ ¼ c
t� b

a

� �
¼ e
�

b2ðt�bÞ2

2a2 cos
pðt� bÞ

a

� �
, (11)

where a is the scale parameter for dilation and b is for time translation. By carefully choosing
parameters a and b, a daughter Morlet wavelet that closely matches the shape of mechanical
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impulse can be constructed, as shown in Fig. 9(b). And if the wavelet transform (or wavelet
filtering) is conducted based on this filter kernel, it should be able to detect the ‘‘similar’’
components from the noisy signal.
In the next section, a two-step approach is proposed to find the appropriate parameters b and a

that can construct an optimal wavelet filter.
4.3. Optimal selection of shape factor b based on Shannon entropy

The sparseness of wavelet coefficients is often used as the rule for evaluating the efficiency of
wavelet transforms. The wavelet corresponding to the fewest and dominant wavelet transforma-
tion coefficients of a signal is ideal. An optimal wavelet transformation should be able to condense
the signal into several large coefficients. The simplest definition of sparseness states that in a
sparse matrix or vectors, most of the elements are zero. The sparseness of a series can be evaluated
by various criteria.
The simplest way to measure the sparseness is the L0 norm

L0 ¼
P

i

vi; vi 2 f0; 1g

fxi4Threshold! vi ¼ 1; xioThreshold! vi ¼ 0g:

If L0 ¼ 0 the vector x is completely sparse (i.e. contains only zeros). Quite obviously, L0 norm is
not very practical for measuring sparseness of noisy data. Adding a very small measurement noise
makes completely sparse data completely non-sparse. Therefore, a variety of sparseness
measurement criteria are proposed by researchers [24], such as Lp norm, Tanh-Function,
kurtosis, etc. Among them, Shannon entropy is one of the well-adopted sparseness criterion.
Shannon entropy was first introduced by Shannon in connection with communication theory in

1948 [25,26]. Shannon entropy is defined as

HðpÞ ¼ �
Xn

i¼1

pin log pi;
Xn

i¼1

pi ¼ 1,

where pi is the probability of observing the ith possible value of random variable
X 2 ½x1; x2; . . . ; xn�.
Shannon entropy is the central role of information theory sometimes referred as measure of

uncertainty. The entropy of a random variable is defined in terms of its probability distribution
and can be shown to be a good measure of randomness and sparseness. Shannon Entropy, thus
can be used to evaluate the sparcity of wavelet coefficients [15]. Wavelet transform coefficients
with minimal Shannon entropy can be treated as the sparsest result. Therefore, the corresponding
shape factor b can be adopted as the optimal result.
4.4. Optimal selection of scale a based on singular value decomposition

After the shape factor b is determined by the minimal Shannon entropy criterion, the next step
is to choose the appropriate wavelet transformation scale a, in other words, the frequency range of
the wavelet filter so that the periodic pattern of the noisy signal can be detected.
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Since the objective of de-noising is to identify the weak periodic components from the noisy
signal, the periodicity of wavelet coefficients can be used as the criterion for selecting the optimal
scale a. The scale a that can reveal the strongest periodicity from the wavelet coefficients will be
selected as the optimal wavelet transform scale.
Conventionally, signal periodicity detection can be conduced by spectral analysis methods such

as Fourier analysis, power spectral density, periodogram, etc. Nevertheless traditional Fourier-
based methods assumed that the signal can be decomposed into multiple components, where only
the sinusoidal pattern is permissible for each component [27]. Therefore, when dealing with
vibration signals of mechanical faults, whose patterns are more impulse-like and their amplitudes
vary with time, Fourier-based method cannot reveal its periodicity explicitly. In addition, the
weak domination of impulse series compared with the background noise adds another constraint
to conventional methods.
Those constraints lead to the development of a new periodicity detection method. Singular

Value Decomposition (SVD) can be applied to detect the periodicity of the time series [22]. It is
much more powerful and sensitive in terms of information content and robustness than the
presently available tools based on Fourier decomposition [27]. The SVD of an m� n matrix D is
defined as the decomposition [23]

D ¼ UEVT, (12)

where U is m�m square matrix and V is n� n square matrix with orthogonal columns so that

UTU ¼ I ; VTV ¼ I . (13)

Additionally E is an m� n diagonal matrix, E ¼ diagðs1; s2; . . . ;spÞ, with p ¼ minðm; nÞ, and
the diagonal elements ½s1; s2; . . . ; sp� of matrix E are the singular values of matrix D and non-
negative numbers ½s1; s2; . . . ; sp� are conventionally arranged as s1Xs2X � � �XsnX0. The
power of the SVD becomes apparent as its connections with other fundamental topics of linear
algebra are explored. For example, if D has rank r and r40, then D has exactly r strictly positive
singular values, so that sr40 and srþ1 ¼ � � � ¼ sp ¼ 0. If D has full rank, all its singular values are
nonzero.
Consider a periodic signal X ¼ ½x1; . . . ;xl� with a period of length n. A matrix X can be formed

by partitioning the series into periods and placing each period as a row of X, as

X ¼

xð1Þ . . . xðnÞ

xðnþ 1Þ . . . xð2nÞ

..

. . .
. ..

.

xððm� 1Þnþ 1Þ . . . xðmnÞ

0
BBBBB@

1
CCCCCA
. (14)

The matrix X has m repeated rows and is of rank 1. Therefore, it should have only 1 non-zero
singular value s1 and m� 1 zero singular values.
Now consider the case of a periodic waveform with time-varying amplitude plus noise.

Assuming the period length of the time series X ¼ ½x1; . . . ; xl � is still n, a different size matrix
X(round(l/i), i), 2pipl/2 can be formed by dividing the time series into segments with different
lengths i. The matrix X may now be full rank due to the noise, but s1 would be very large
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compared to the rest of singular values when i ¼ n. Hence, the ratio

di ¼
s1
s2

� �2

(15)

will exhibit its maximal value at i ¼ n. Then di can be used to estimate the periodicity of the signal.
Connecting the two optimization processes, a two-step optimal parameter selection algorithm

can be designed as depicted in Fig. 10.
An experiment based on simulated data is conducted to compare the periodicity detection

capability of Fourier-transform-based method and SVD-based method. Fig. 11(a) shows a
simulated impulse signal consisting of 10 impulses with period of 100 data points. Assuming that
the data sampling rate is 1000Hz, the impulse period is 0.1 s. Fig. 11(b) shows the simulated signal
with additive white noise. Obviously, the additive white noise significantly weakens the periodic
characteristic of the simulated signal. Fig. 11(c) shows the Fast Fourier Transform (FFT)
spectrum of the simulated signal. The expected periodic component, which should be represented
by a harmonic at 10Hz (0.1 s) in the FFT spectrum, is heavily masked by the background noise
and higher frequency harmonics. On the other hand, the periodicity of the simulated signal is
clearly revealed by the SVD-based method as shown in Fig. 11(d). A peak at 0.1 s in Fig. 11(d)
clearly indicates the existence of the periodic component.
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Fig. 10. Flowchart for selecting optimal shape factor and wavelet transform scale.
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4.5. Comparison study on simulated signals

In order to compare the performance of Wavelet decomposition-based de-noising method and
the wavelet filter, both methods are applied to the simulated data shown in Fig. 11(b). For the
wavelet de-noising method, different thresholds are applied as well.
Fig. 12(a–d) show the de-noised signal by applying soft Stein’s Unbiased Risk Estimation

(SURE), soft heuristic SURE, soft minimaxi, and soft universal threshold, respectively [28,29].
SURE threshold is based on a quadratic loss function. An estimate of the risk is given for a
particular threshold value t. Minimizing the risks in t gives a selection of the threshold value.
Heuristic SURE is a heuristic variant of the SURE threshold. Minimaxi uses a fixed threshold
chosen to yield minimax performance for mean square error against an ideal procedure. The
minimax principle is used in statistics in order to design estimators. Since the de-noised signal can
be assimilated to the estimator of the unknown regression function, the minimax estimator is the
one that realizes the minimum of the maximum mean square error obtained for the worst function
0 200 400 600 800 1000 1200
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Data Points (No.)

A
m

pl
itu

de

Simulated impulse signal

0 200 400 600 800 1000 1200
-1.5

-1

-0.5

0

0.5

1

1.5

2
Simulated impulse signal+white noise

A
m

pl
itu

de

Data Points (No.)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Frequency (Hz)

A
m

pl
itu

de

FFT of Simulated signal

10Hz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Period (s)

P
er

io
di

ci
ty

Periodicity detection using SVD-based method

0.1s Period

(a) (b)

(c) (d)
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of simulated signal and (d) periodicity detection using SVD-based method.
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(SURE), (b) soft heuristic SURE, (c) soft minimaxi and (d) soft universal threshold.
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in a given set. Universal threshold is defined by the equation

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðnÞ

p
,

where n is the signal length and s is the noise standard deviation.
Observing the de-noising results after appliying four different thresholding strategies, only the

de-noised signal in Fig. 12(a) recovers the original signal partially. But the periodic feature is not
as noticeable as it is in the original signal. In addition, there are other factors influencing the
effectiveness of de-noising, such as the wavelet decomposition level and threshold rescaling
method selection, which make the de-noising problem even more intricate. Since there are no
explicit guidelines for how to tune the existing parameters, most of the time de-noising becomes a
trial-and-error process.
For the comparison study, the wavelet filter method proposed in this paper is applied to the

same set of simulated data. To find an optimal wavelet filter that can discover the periodic
impulses from the noisy raw signal, the first step is to search for the optimal shape factor b.
Increasing b from 0.1 to 20 and calculating the entropy of the corresponding coefficients, the
optimal shape factor b leading to the minimal Shannon entropy relationship can be obtained.
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As depicted in Fig. 13, the entropy exhibits its minimal value at b ¼ 0:5. Therefore, b ¼ 0:54 is
selected as the optimal shape factor.
After the shape factor b ¼ 0:54 is selected, a recursive route is carried out to find the optimal

scale that can uncover the strongest periodicity from the wavelet transform results. The searching
ranges for period and scale are set as [2,300] and [1,30], respectively. The measurement of
periodicity di is calculated and presented as a three-dimensional surface in Fig. 14. Strong
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Fig. 13. The relationship between Shannon entropy of the wavelet transform coefficient and shape factor b.

Fig. 14. Periodicity evaluation with different scale and different period.
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periodicity is discovered when the period i equals 100, 200, and 300. In addition, the periodicity
reaches its maximum value when the scale a ¼ 10. Thus, we can conclude that conducting the
wavelet transform at scale 10 can best reveal the periodicity of the signal.
Fig. 15 shows the de-noised signal by applying the Morlet wavelet filter with optimal shape

parameter b ¼ 0:54 and scale parameter a ¼ 10. The simulated impulses are conspicuously
represented. Even though the noise level is still high, the periodic character of the simulated signal,
which is the most important feature for fault diagnostics, is recovered significantly.
5. Experimental verification

5.1. Experimental setup

Most bearing diagnostics research involves studying the defective bearings recovered from the
field, where the bearings exhibit mature faults, or from simulated or ‘‘seeded’’ damage. Simulated
damages are typically induced by scratching or drilling the surface, introducing debris into the
lubricant, or machining with an electrical discharge. Experiments using defective bearings have
less capability to discover natural defect propagation in the early stages. In order to validate the
wavelet filter methodology and truly reflect the real defect propagation processes, bearing run-to-
failure tests were performed under normal load conditions on a specially designed test rig.
The bearing test rig hosts four test bearings on one shaft. The shaft is driven by an AC motor

and coupled by rub belts. The rotation speed was kept constant at 2000 rpm. A radial load of
6000 lbs. is added to the shaft and bearing by a spring mechanism. All the bearings are force
lubricated. An oil circulation system regulates the flow and the temperature of the lubricant.
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Fig. 16. Bearing test rig.
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A magnetic plug installed in the oil feedback pipe collects debris from the oil as evidence of
bearing degradation. The test will stop when the accumulated debris adhered to the magnetic plug
exceeds a certain level and causes an electrical switch to close.
Four Rexnord ZA-2115 double row bearings were installed on one shaft as shown in Fig. 16.

The bearings have 16 rollers in each row, a pitch diameter of 2.815 in., roller diameter of 0.331 in.,
and a tapered contact angle of 15.171. A PCB 353B33 High Sensitivity Quartz ICPs

Accelerometer was installed on each bearing housing. Four thermocouples were attached to the
outer race of each bearing to record bearing temperature for monitoring the lubrication purposes.
Vibration data was collected every 20minutes by a National Instruments DAQCard-6062E data
acquisition card. The data sampling rate is 20 kHz and the data length is 20480 points. Data
collection is conducted by a National Instruments LabVIEW program.

5.2. Experimental results analysis

The test was carried out for 35 days until a significant amount of metal debris was found on the
magnetic plug of the test bearing.
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Fig. 17. Picture of bearing components after test: (a) inner race defect in bearing 3, (b) roller element defect in bearing 4

and (c) outer race defect in bearing 4.
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An inner race defect was discovered in test bearing 3, and a roller element defect and outer race
defect were found in test bearing 4 as shown in Fig. 17. Fig. 18 depicts the time domain features,
root mean square (rms), and kurtosis for the entire life cycle from bearings 3 and 4 respectively.
Fig. 18(a) reveals that for the inner race defect, the change of rms can be divided into two

stages. In the first stage, during the first 30 days of operation, no underlying trend was observed.
After the test had been carried out for 30 days (approximately 86.4 million cycles), the rms started
to increase and the rate of change also increased significantly.
For bearing 4, which exhibited mixed roller element and outer race defects, the trend of rms

increased to a certain level, then decreased and rose again. The fluctuating trend can be explained
by the nature of the propagating process of the damage. When the surface defect just initiated,
small spalling or cracks were formed and were later smoothed by the continuous rolling contact.
As the damage spread over a broader area, the vibration level rises again. The discovery in [30]
also verified this ‘‘healing’’ phenomenon. The fluctuating trend of kurtosis features in both
bearings 3 and 4 can also be explained by this theory.
The time domain feature also shows that most of the bearing fatigue time is consumed during

the period of material accumulative damage, while the period of crack propagation and
development is relatively short. This means that if the traditional threshold-based condition
monitoring approach is used, the response time available for the maintenance crew to respond
prior to catastrophic failure after a defect is detected in such bearings is very short. A prognostic
approach that can detect the defect at the early stage is demanded so that enough buffer time is
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Fig. 18. Time feature (a) rms of bearing 3, (b) rms of bearing 4, (c) Kurtosis of bearing 3 and (d) Kurtosis of bearing 4

for the whole life cycle.
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available for maintenance and logistical scheduling. This requirement is extremely important for
some mission-critical situations, such as power plants and continuous production lines.
Fig. 19 presents the vibration waveform collected from bearing 4 at the last stage of the bearing

test. The signal exhibits strong impulse periodicity because of the impacts generated by a mature
outer race defect. The band pass frequency of the outer race (BPFO) is 236.4Hz, so we expect to
see a duration between the two conjoined impulses of 1=236:4 ¼ 0:0042 s. The vibration waveform
clearly verifies the calculation.
However, when examining historical data and observing the vibration signal three days before

the bearing failed, there is no sign of periodic impulse as shown in Fig. 20. The periodic impulse
feature is totally masked by the noise.
The de-noising method proposed in this paper is used to enhance the signal shown above. At

first, the optimal wavelet shape factor b ¼ 1:3 is found by the minimal entropy method. Then
scale a from 1 to 5 was scanned to find the optimal scale that can reveal the signal periodicity most
clearly. Fig. 21 demonstrates the periodicity measurement when the scales for the wavelet filter are
chosen as [1,5].
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Fig. 19. The vibration signal waveform of a faulty bearing.
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Notably, the selection of search range for optimal scale a is very important. It should be
determined by checking the corresponding wavelet filter band pass width, otherwise a misleading
result is very possible.
The periodicity of the de-noised signal reaches its maximum value using scale a ¼ 2:6. Fig. 22

further illustrates that when scale a ¼ 2:6 the periodicity measurement exhibits its maximum value
at period n ¼ 89 data points. Given the data sampling rate of 20 kHz and signal length of 20480
data points, period n ¼ 89 actually means frequency 20480=89 ¼ 230Hz, which is very close to the
BPFO 236.4Hz.
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Applying the wavelet filter with carefully selected shape factor b ¼ 1:3 and scale a ¼ 2:6, the de-
noised signal can be obtained as shown in Fig. 23. The periodic impulse feature is clearly
discovered. The period of the impulse is 230Hz, which is a strong evidence of bearing outer race
degradation. Comparing Figs. 23 and 20, the wavelet filter-based de-noising method successfully
enhanced the signal feature and provided potent proof for prognostic decision-making.
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Fig. 23. The enhanced signal of early stage defect.
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6. Conclusion and discussion

De-noising and extraction of the weak signature from the noisy signal are crucial to fault
prognostics, in which case features are often very weak and masked by the background noise.
Prognostics is achieved by detecting the defect at its initial stage and alerting the operator or
maintenance personnel before the defect develops into a catastrophic failure.
The performance of traditional wavelet decomposition-based de-noising methods is greatly

impacted by relative energy levels of signal coefficients and white noise coefficients. When dealing
with smooth signals, satisfactory results can generally be achieved by manipulating the threshold.
The underlying reason is because with smooth signals, a small number of large coefficients can
characterize the original signal. However, it is much more challenging to de-noise impulse series
signals where wavelet coefficients are not so concentrated.
The Morlet wavelet filter-based de-noising method is based on the idea of detecting the

‘‘similar’’ impulse components from the noisy signal by designing a daughter Morlet wavelet with
specific shape factor b at certain scale a. This method is well suited for detecting the weak
signature from a defective bearing signal where defect features are impulse-like. By applying the
minimal Shannon entropy criterion, an optimal wavelet shape factor b with optimal time-
frequency resolution capability can be obtained. The optimal scale a can be determined by
Singular Value Decomposition (SVD)-based periodicity evaluation of wavelet transform results
based on the assumption that the undetected signature is periodic.
The experimental results verify the effectiveness of the proposed method. The weak periodic

impulse signature is successfully revealed and enhanced. Detection of the degradation signature at
its early stage gives more time for maintenance reaction and business decision-making and also
provides proof for prognostics. However, prognostics can only be accomplished by combining the
knowledge from the physical degradation model and tendency forecasting analysis, which
continues to make prognostics an attractive research topic.
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